1.单选题- (共8题)
3.
若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=( )
A.(2,-3) | B.(-2,3) | C.(2,3) | D.(-2,-3) |
2.选择题- (共5题)
3.填空题- (共5题)
4.解答题- (共6题)
21.
阅读下面的文字,解答问题:大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
来表示
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为
的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(
)2<32,即2<
<3, ∴
的整数部分为2,小数部分为(
-2).
请解答:
(1)
的整数部分是__________,小数部分是__________
(2)如果
的小数部分为a,
的整数部分为b,求a+b-
的值;




事实上,小明的表示方法是有道理的,因为





请解答:
(1)

(2)如果



22.
请把下面证明过程补充完整:
已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.
求证:∠A=∠C.

证明:∵BE、DF分别平分∠ABC、∠ADC(已知),
∴∠1=
∠ABC,∠3=
∠ADC(角平分线定义).
∵∠ABC=∠ADC(已知),
∴∠1=∠3(等量代换),
∵∠1=∠2(已知),
∴∠2=∠3(等量代换).
∴_____∥_____ (___ __).
∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).
∴∠A=∠C(___ __).
已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.
求证:∠A=∠C.

证明:∵BE、DF分别平分∠ABC、∠ADC(已知),
∴∠1=


∵∠ABC=∠ADC(已知),
∴∠1=∠3(等量代换),
∵∠1=∠2(已知),
∴∠2=∠3(等量代换).
∴_____∥_____ (___ __).
∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).
∴∠A=∠C(___ __).
23.
(1)问题发现
如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC
∴∠C= .
∵EF∥AB,∴∠B= ,
∴∠B+∠C= .
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题
如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(直接写出结论,不用写计算过程)
如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC
∴∠C= .
∵EF∥AB,∴∠B= ,
∴∠B+∠C= .
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题
如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(直接写出结论,不用写计算过程)
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(5道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:7
7星难题:0
8星难题:4
9星难题:5