1.单选题- (共1题)
2.选择题- (共2题)
3.解答题- (共3题)
4.
如图四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上,O为AC与BD的交点.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB中点时,求证:OE∥平面PDA,OE∥平面PDC.
(3)当
且E为PB的中点时,求AE与平面PBC所成的角的大小.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB中点时,求证:OE∥平面PDA,OE∥平面PDC.
(3)当


5.
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,
BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点
(1)证明:直线EE1∥平面FCC1
(2)求:二面角B-FC1-C的余弦值.
BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点
(1)证明:直线EE1∥平面FCC1
(2)求:二面角B-FC1-C的余弦值.

试卷分析
-
【1】题量占比
单选题:(1道)
选择题:(2道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:4