1.单选题- (共8题)
2.
下列从左到右的变形,是因式分解的是( )
A.(3-x)(3+x)=9-x2 |
B.m3-mn2=m(m+n)(m-n) |
C.(y+1)(y-3)=-(3-y)(y+1) |
D.4yz-2y2z+z=2y(2z-yz)+z |
3.
一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是( )
A.a3-a=a(a2-1) |
B.m2-2mn+n2=(m-n)2 |
C.x2y-xy2=xy(x-y) |
D.x2-y2=(x-y)(x+y) |
6.
因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为( )
A.(x+2)(x-3) | B.(x-2)(x+1) |
C.(x+6)(x-1) | D.无法确定 |
2.选择题- (共2题)
3.填空题- (共6题)
4.解答题- (共5题)
17.
阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0,
∴(m-n)2+(n-4)2=0,
∴(m-n)2=0,(n-4)2=0,
∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)若a2+b2-4a+4=0,则a=________,b=________;
(2)已知x2+2y2-2xy+6y+9=0,求xy的值;
(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0,
∴(m-n)2+(n-4)2=0,
∴(m-n)2=0,(n-4)2=0,
∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)若a2+b2-4a+4=0,则a=________,b=________;
(2)已知x2+2y2-2xy+6y+9=0,求xy的值;
(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.
18.
如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.

(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).
方法一: ________________________________________________________;
方法二: __________________________________________________________.
(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:
已知实数a,b满足:a+b=6,ab=5,求a-b的值.

(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).
方法一: ________________________________________________________;
方法二: __________________________________________________________.
(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:
已知实数a,b满足:a+b=6,ab=5,求a-b的值.
20.
阅读材料:
对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax-3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.
解题过程如下:
x2+2ax-3a2
=x2+2ax-3a2+a2-a2(第一步)
=x2+2ax+a2-a2-3a2(第二步)
=(x+a)2-(2a)2(第三步)
=(x+3a)(x-a).(第四步)
参照上述材料,回答下列问题:
(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法( )
(2)从第三步到第四步用到的是哪种因式分解的方法:__________;
(3)请你参照上述方法把m2-6mn+8n2因式分解.
对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax-3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.
解题过程如下:
x2+2ax-3a2
=x2+2ax-3a2+a2-a2(第一步)
=x2+2ax+a2-a2-3a2(第二步)
=(x+a)2-(2a)2(第三步)
=(x+3a)(x-a).(第四步)
参照上述材料,回答下列问题:
(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法( )
A.提公因式法 | B.平方差公式法 |
C.完全平方公式法 | D.没有因式分解 |
(3)请你参照上述方法把m2-6mn+8n2因式分解.
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:2
9星难题:2