1.单选题- (共3题)
3.
如图中的古印度的“无字证明”直观的证明一个重要定理,这个定理早在三千多年前就被周朝的数学家商高提出,它被记载于我国古代著名的数学著作是( )


A.《周髀算经》 | B.《九章算术》 | C.《几何原本》 | D.《海岛算经》 |
2.填空题- (共1题)
3.解答题- (共3题)
5.
山西省实验中学欲向清华大学推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图1:

其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:
图2是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:
(1)补全图1和图2;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)

其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
图2是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:
(1)补全图1和图2;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)
6.
阅读下列材料,并完成相应的任务.
古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=
(其中a,b,c是三角形的三边长,
,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴
=6
∴S=
=
=6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=7,AC=8,AB=9
(1)用海伦公式求△ABC的面积;
(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.
古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=


例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴

∴S=


事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=7,AC=8,AB=9
(1)用海伦公式求△ABC的面积;
(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.

试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(1道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:7