1.单选题- (共9题)
2.
一个大正方形和四个完全相同的小正方形按照如图①、②两种方式摆放,已知每个小正方形的边长为1,则图②的大正方形中,未被小正方形覆盖部分的面积是( )


A.a2﹣4a | B.a2﹣2a | C.a2+4a | D.a2+2a |
3.
某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):
下列说法错误的是( )
温度/℃ | ﹣20 | ﹣10 | 0 | 10 | 20 | 30 |
声速/m/s | 318 | 324 | 330 | 336 | 342 | 348 |
下列说法错误的是( )
A.在这个变化中,自变量是温度,因变量是声速 |
B.温度越高,声速越快 |
C.当空气温度为20℃时,声音5s可以传播1740m |
D.当温度每升高10℃,声速增加6m/s |
5.
如图,已知△ABC,若AC⊥BC,CD⊥AB,∠1=∠2,下列结论:①∠3=∠EDB;②∠A=∠3;③AC∥DE;④∠2与∠3互补;⑤∠1=∠EDB,其中正确的有( )


A.2个 | B.3个 | C.4个 | D.5个 |
2.选择题- (共1题)
10.
1936年6月至1937年6月法国以布鲁姆为首的人民阵线政府推出了—系列政策:调整劳资关系;改组法兰西银行;成立国家小麦局,控制农产品销售,并规定农场抵押偿付办法;扶植企业发展,举公共工程;改革税收制度等。这种做法( )
3.填空题- (共4题)
4.解答题- (共11题)
18.
某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:
(1)在这个变化过程中,自变量、因变量是什么?
(2)洗衣机的进水时间是多少分钟?清洗时洗衣机的水量是多少升?
(3)时间为10分钟时,洗衣机处于哪个过程?
(1)在这个变化过程中,自变量、因变量是什么?
(2)洗衣机的进水时间是多少分钟?清洗时洗衣机的水量是多少升?
(3)时间为10分钟时,洗衣机处于哪个过程?

19.
研究发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间有如下关系:
根据以上信息,回答下列问题:
(1)当提出概念所用的时间为10分钟时,学生的接受能力约是多少?
(2)当提出概念所用的时间为多少分钟时,学生的接受能力最强?
(3)在什么时间范围内,学生的接受能力在逐渐增强?什么时间范围内,学生的接受能力在逐渐增强减弱?
提出概念所用的时间x(分钟) | 2 | 5 | 7 | 10 | 12 | 13 | 14 | 17 | 20 |
对概念的接受能力y | 47.8 | 53.5 | 56.3 | 59 | 59.8 | 59.9 | 59.8 | 58.3 | 55 |
根据以上信息,回答下列问题:
(1)当提出概念所用的时间为10分钟时,学生的接受能力约是多少?
(2)当提出概念所用的时间为多少分钟时,学生的接受能力最强?
(3)在什么时间范围内,学生的接受能力在逐渐增强?什么时间范围内,学生的接受能力在逐渐增强减弱?
21.
已知,直线AB∥DC,点P为平面上一点,连接AP与CP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(4道)
解答题:(11道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:17
7星难题:0
8星难题:4
9星难题:2