1.单选题- (共6题)
2.多选题- (共3题)
8.
某市有
,
,
,
四个景点,一位游客来该市游览,已知该游客游览
的概率为
,游览
,
和
的概率都是
,且该游客是否游览这四个景点相互独立.用随机变量
表示该游客游览的景点的个数,下列正确的( )











A.游客至多游览一个景点的概率![]() | B.![]() |
C.![]() | D.![]() |
3.填空题- (共2题)
11.
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)
4.解答题- (共5题)
15.
已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.

(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.











(1)求

(2)试问:是否存在定点



16.
班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为
,求
的分布列和数学期望;
②根据上表数据,求物理成绩
关于数学成绩
的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程
,
其中
,
.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩![]() | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩![]() | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为


②根据上表数据,求物理成绩


附:线性回归方程

其中


![]() | ![]() | ![]() | ![]() |
76 | 83 | 812 | 526 |
试卷分析
-
【1】题量占比
单选题:(6道)
多选题:(3道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16