辽宁省实验中学、沈阳市东北育才学校等五校2016-2017学年高二下学期期末联考数学(理)试题

适用年级:高二
试卷号:574367

试卷类型:期末
试卷考试时间:2017/8/18

1.单选题(共10题)

1.
函数的图象在点处的切线斜率为,则实数(  )
A.B.C.2D.3
2.
若对任意的实数,函数上是增函数,则实数的取值范围是(   )
A.B.C.D.
3.
定义:,如,则(  )
A.0B.C.3D.4
4.
在平面内,一条抛物线把平面分成两部分,两条抛物线最多把平面分成七个部分,设条抛物线至多把平面分成个部分,则(  )
A.B.C.D.
5.
甲、乙两类水果的质量(单位:)分别服从正态分布,其正态分布的密度曲线如图所示,则下列说法错误的是(  )
A.甲类水果的平均质量
B.甲类水果的质量比乙类水果的质量更集中于平均值左右
C.甲类水果的平均质量比乙类水果的质量小
D.乙类水果的质量服从正态分布的参数
6.
四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程和相关系数,分别得到以下四个结论:


其中,一定不正确的结论序号是(  )
A.②③B.①④C.①②③D.②③④
7.
的展开式中,各项的二项式系数之和为64,则展开式中常数项为(  )
A.60B.45C.30D.15
8.
从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,则不同的安排种数为(  )
A.1440B.3600C.5040D.5400
9.
一名工人维护3台独立的游戏机,一天内3台游戏机需要维护的概率分别为0.9、0.8和0.75,则一天内至少有一台游戏机不需要维护的概率为(  )
A.0.995B.0.54C.0.46D.0.005
10.
由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是(  )
A.类比推理B.三段论推理C.归纳推理D.传递性推理

2.填空题(共3题)

11.
已知函数的图像不经过第四象限,则实数__________.
12.
为随机变量,,若随机变量的数学期望,则__________.(结果用分数表示)
13.
甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖.他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是__________.

3.解答题(共4题)

14.
已知数列的前项和为
(Ⅰ)求,猜想的通项公式,并用数学归纳法证明;
(Ⅱ)设,求证:数列中任意三项均不成等比数列.
15.
“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

 


合计
认可
 
 
 
不认可
 
 
 
合计
 
 
 
 
(Ⅰ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;
(Ⅱ)若从此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
附:参考数据:(参考公式:

0.150
0.100
0.050
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
16.
已知,在的展开式中,第二项系数是第三项系数的
(1)求展开式中二项系数最大项;
(2)若
求①的值;②的值.
17.
某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为的五批疫苗,供全市所辖的三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记三个区选择的疫苗批号的中位数为,求 的分布列及期望.
试卷分析
  • 【1】题量占比

    单选题:(10道)

    填空题:(3道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:17