安徽省宿州市十三所重点中学2018-2019学年高二下学期期中考试数学(文)试题

适用年级:高二
试卷号:574074

试卷类型:期中
试卷考试时间:2019/5/26

1.单选题(共8题)

1.
已知x,y∈R,给出命题:“x,y∈R,若x2+y2=0,则x=y=0”,则它的逆命题、否命题、逆否命题中,真命题的个数是(  )
A.0个B.1个C.2个D.3个
2.
已知函数f(x)=xlnx,x∈(0,+∞),则函数f(x)在x=1处的切线方程(  )
A.B.C.D.
3.
已知物体的运动方程为(t是时间,s是位移),则物体在时刻t=1时的速度大小为(  )
A.1B.C.2D.3
4.
   函数的图像如图所示,则函数的图像可能是
A.B.
C.D.
5.
已知函数f(x)=alnx-sinx在处取得极值,则a=(  )
A.B.C.D.
6.
在如图的正方体中,MN分别为棱BC和棱的中点,则异面直线ACMN所成的角为( )
A.B.C.D.
7.
已知图中的网格是由边长为的小正方形组成的,一个几何体的三视图如图中的粗实线所示,则这个几何体的体积为(  )
A.8B.C.D.
8.
若过A(3,y),B(2,-4)两点的直线的倾斜角为45°,则y=(  )
A.B.C.3D.

2.选择题(共2题)

9.下列叙述正确的是(    )
10.下列叙述正确的是(    )

3.填空题(共4题)

11.
下列说法:
(1)设a,b是正实数,则“a>b>1”是“log2a>log2b”的充要条件;
(2)对于实数a,b,c,如果ac>bc,则a>b;
(3)“m=”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;
(4)等比数列{an}的公比为q,则“a1>0且q>1”是对任意n∈N+,都有an+1>an的充分不必要条件;
其中正确的命题有______
12.
命题“∃x∈(0,2π),cosx>x”的否定是______.
13.
设F为抛物线x2=8y的焦点,点A,B,C在此抛物线上,若,则=______
14.
直线与圆相交所截得弦长为______.

4.解答题(共5题)

15.
已知命题p:任意,x2-a≥0恒成立;命题q:函数的值可以取遍所有正实数.
(Ⅰ)若命题p为真命题,求实数a的范围;
(Ⅱ)若命题p∧q为假命题,p∨q为真命题,求实数a的取值范围.
16.
设函数,若曲线y=f(x)在点(2,f(2))处的切线方程为5x-4y-4=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求证:在曲线y=f(x)上任意一点处的切线与直线x=0和y=x所围成的三角形面积为定值,并求出此定值.
17.
已知函数
(Ⅰ)当a=2时,求f(x)的单调递减区间;
(Ⅱ)若a>1,求f(x)在区间(0,+∞)上的极大值与极小值.
18.
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD=4,AB=3,点E为线段PD的中点.

(Ⅰ)求证:PB∥平面AEC;
(Ⅱ)求证:AE⊥PC;
(Ⅲ)求三棱锥P-ACE的体积.
19.
已知直线
(Ⅰ)若,求实数的值;
(Ⅱ)当时,求直线之间的距离.
试卷分析
  • 【1】题量占比

    单选题:(8道)

    选择题:(2道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:17