黑龙江省哈尔滨市南岗区联盟2018-2019学年七年级(上)期中数学试题

适用年级:初一
试卷号:570892

试卷类型:期中
试卷考试时间:2019/3/13

1.单选题(共9题)

1.
下列四个式子中,是一元一次方程的是(  )
A.2x﹣6B.x﹣1=0C.2x+y=25D.=1
2.
按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()

A. 2个 B. 3个 C. 4个 D. 5个
3.
某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是(  )
A.3x﹣20=24x+25B.3x+20=4x﹣25
C.3x﹣20=4x﹣25D.3x+20=4x+25
4.
如图,由AD∥BC可以得到的是(  )
A.∠1=∠2B.∠3+∠4=90°
C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°
5.
如图,ABEFEFCDEGBD,则图中与∠1相等的角(除∠1外)共有(  )
A.6个B.5个C.4个D.2个
6.
如图,若a∥b,∠1=115°,则∠2=()

A. 55° B. 60° C. 65° D. 75°
7.
x=2是下列方程()的解.
A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=0
8.
如图,图中∠1与∠2是同位角的是(   )
A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)
9.
下列等式变形中,结果不正确的是( ).
A.如果, 那么
B.如果,那么
C.如果,那么
D.如果,那么

2.选择题(共2题)

10.

2015年,在德国波恩召开的联合国教科文组织第三十九届世界遗产委员会会议上,中国土司遗址被列入世界遗产名录。至此,中国世界遗产总数已达到48项,继续稳居世界第二位。据此回答小题。

11.

电视剧《乡村爱情》贴近生活,深受观众喜爱,这对文化创作者的启示(  )

①文化创新要着眼于人民群众不断增长的精神文化需求

②进行文化创新必须坚定地走与人民群众的实践相结合的道路

③文化创新必须像镜子一样真实地记录生活

④文化创新要立足于社会主义现代化建设的实践

3.填空题(共10题)

12.
关于x的方程ax+1=4的解是x=1,则a=_____.
13.
若2x32k+2k=41是关于x的一元一次方程,则k=_____.
14.
若关于x的方程的解相同,则k的值为__________.
15.
已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是_____岁.
16.
某轮船在松花江沿岸的两城市之间航行,已知顺流航行要 6 小时由 A 市到达 B 市,逆流航行要 10 小时由 B 市到达 A 市,则江面上的一片树叶由 A 市漂到 B 市需要_____小时.
17.
如图,直线AB与直线CD相交于点OE是∠AOD内一点,已知OEAB,∠BOD=45°,则∠COE的度数是_____.
18.
如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为_____.
19.
如图,已知DEBC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为_____.
20.
如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)
21.
已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3= 

4.解答题(共7题)

22.
已知 x="3" 是方程 4(x﹣1)﹣mx+6="8" 的解,求 m2+2m﹣3 的值.
23.
解方程
(1)
(2)
24.
小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:
 
规格(升/桶)
价格(元/桶)
大桶装
18
225
小桶装
5
90
 
小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,
(1)小明爸预计墙面的粉刷需要乳胶漆多少升?
(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?
(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?
25.
如图,EDF上的点,BAC上的点,DFAC,∠C=∠D,求证:∠2=∠1.
26.
已知,点A,点B分别在线段MNPQ上∠ACB﹣∠MAC=∠CBP
(1)如图1,求证:MNPQ
(2)分别过点A和点C作直线AGCH使AGCH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CHAG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;
(3)在(2)的条件下,若BDAE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.
27.
如图,BD是∠ABC的平分线,EDBC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:
证明:∵BD是∠ABC的平分线(已知)
∴∠1=∠2(角平分线定义)
EDBC(已知)
∴∠5=∠2(    
∴∠1=∠5(等量代换)
∵∠4=∠5(已知)
EF        
∴∠3=∠1(    
∴∠3=∠4(等量代换)
EF是∠AED的平分线(角平分线定义)
28.
某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
试卷分析
  • 【1】题量占比

    单选题:(9道)

    选择题:(2道)

    填空题:(10道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:9

    7星难题:0

    8星难题:8

    9星难题:7