1.单选题- (共4题)
4.
如图1为某立交桥示意图(道路宽度忽略不计),A﹣F﹣G﹣J为高架,以O为圆心的圆盘B﹣C﹣D﹣E位于高架下方,其中AB,AF,CH,DI,EJ,GJ为直行道,且AB=CH=DI=EJ,AF=GJ,弯道FG是以点O为圆心的圆上的一段弧(立交桥的上下高度差忽略不计),点B,C,D,E是圆盘O的四等分点.某日凌晨,有甲、乙、丙、丁四车均以10m/s的速度由A口驶入立交桥,并从出口驶出,若各车到圆心O的距离y(m)与从A口进入立交后的时间x(s)的对应关系如图2所示,则下列说法错误的是( )


A.甲车在立交桥上共行驶10s |
B.从I口出立交的车比从H口出立交的车多行驶30m |
C.丙、丁两车均从J口出立交 |
D.从J口出立交的两辆车在立交桥行驶的路程相差60m |
2.填空题- (共3题)
3.解答题- (共4题)
9.
如图,在如图的三个6×6正方形网格中(每个小正方形的边长都为1),分别画一个面积为6的格点直角三角形(三个顶点都在每个边长为1的小正方形顶点上的直角三角形,称之为格点直角三角形),要求所画的三角形互相之间不全等.

10.
如图1,在平面直角坐标系xOy中,对于任意两点P(x1,y1)与P2(x2,y2)的“最佳距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“最佳距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“最佳距离”为|y1﹣y2|;
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“最佳距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(过点P1平行于x轴的直线与过点P2垂直于x轴的直线交于点Q).
(1)已知点A(﹣
,0),B为y轴上的一个动点.
①若点A与点B的“最佳距离”为3,写出满足条件的点B的坐标;
②直接写出点A与点B的“最佳距离”的最小值;
(2)如图2,已知点C是直线y=
x+3上的一个动点,点D的坐标是(0,1),求点C与点D的“最佳距离”的最小值及相应的点C的坐标.
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“最佳距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“最佳距离”为|y1﹣y2|;
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“最佳距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(过点P1平行于x轴的直线与过点P2垂直于x轴的直线交于点Q).
(1)已知点A(﹣

①若点A与点B的“最佳距离”为3,写出满足条件的点B的坐标;
②直接写出点A与点B的“最佳距离”的最小值;
(2)如图2,已知点C是直线y=


试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:11