1.单选题- (共5题)
5.
为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的()
A.中位数 | B.平均数 | C.众数 | D.方差 |
2.填空题- (共5题)
9.
在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图2是由图1放入矩形内得到的,
,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为__________.


10.
手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的一周当中,每天的步行数和卡路里消耗数(热量消耗,单位:大卡)
孙老师发现每天步行数和卡路里消耗数近似成正比例关系.孙老师想使自己的卡路里消耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
步行数 | 5025 | 5000 | 4930 | 5208 | 5080 | 10085 | 10000 |
卡路里消耗 | 201 | 200 | 198 | 210 | 204 | 405 | 400 |
孙老师发现每天步行数和卡路里消耗数近似成正比例关系.孙老师想使自己的卡路里消耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位)
3.解答题- (共7题)
13.
通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?
14.
如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=
(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).
(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

15.
在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:

*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;
(2)分别以D,E为圆心,以大于
DE的同样长为半径作弧,两弧交于点C ;
(3)作射线OC.则OC就是所求作的射线.
小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.
小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC="∠BOC." 其中证明△ODC≌△OEC的理由是_______________________________________.

*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;
(2)分别以D,E为圆心,以大于

(3)作射线OC.则OC就是所求作的射线.
小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.
小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC="∠BOC." 其中证明△ODC≌△OEC的理由是_______________________________________.
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:7
7星难题:0
8星难题:4
9星难题:6