1.单选题- (共7题)
7.
庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:
甲说:“我或乙能中奖”; 乙说:“丁能中奖”;
丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )

甲说:“我或乙能中奖”; 乙说:“丁能中奖”;
丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )

A.甲 | B.乙 | C.丙 | D.丁 |
2.填空题- (共5题)
3.解答题- (共5题)
13.
已知集合
是集合
的一个含有
个元素的子集.
(Ⅰ)当
时,
设
(i)写出方程
的解
;
(ii)若方程
至少有三组不同的解,写出
的所有可能取值.
(Ⅱ)证明:对任意一个
,存在正整数
使得方程
至少有三组不同的解.




(Ⅰ)当

设

(i)写出方程


(ii)若方程


(Ⅱ)证明:对任意一个




16.
如图
,在矩形
中,
,
为
的中点,
为
的中点.将
沿
折起到
,使得平面
平面
(如图
).

图1 图2
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.















图1 图2
(Ⅰ)求证:

(Ⅱ)求直线


(Ⅲ)在线段





17.
某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时
,两名男生选考方案不同时
,求
的分布列及数学期望
.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
选考方案待确定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时




试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17