1.单选题- (共8题)
2.
有如下命题:①函数y=sinx与y=x的图象恰有三个交点;②函数y=sinx与y=
的图象恰有一个交点;③函数y=sinx与y=x2的图象恰有两个交点;④函数y=sinx与y=x3的图象恰有三个交点,其中真命题的个数为( )

A.1 | B.2 | C.3 | D.4 |
7.
空间直角坐标系O-xyz中,某四面体的顶点坐标分别为(0,0,0),(0,1,1),(1,0,1),(1,1,0),画该四面体三视图时,以yOz平面为投影面所得到的视图为正视图,则该四面体的侧视图是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
2.填空题- (共3题)
3.解答题- (共4题)
12.
如图,已知抛物线C:y2=2px(p>0),G为圆H:(x+2)2+y2=1上一动点,由G向C引切线,切点分别为E,F,当G点坐标为(-1,0)时,△GEF的面积为4.
(Ⅰ)求C的方程;
(Ⅱ)当点G在圆H:(x+2)2+y2=1上运动时,记k1,k2分别为切线GE,GF的斜率,求|
|的取值范围.
(Ⅰ)求C的方程;
(Ⅱ)当点G在圆H:(x+2)2+y2=1上运动时,记k1,k2分别为切线GE,GF的斜率,求|


14.
设D是直角△ABC斜边AC的中点,AB=2
,BC=2.将△CBD沿着BD翻折,使得点C到达P点位置,且PA=
.
(Ⅰ)求证:平面PBD⊥平面ABD;
(Ⅱ)求二面角A-PB-D的余弦值.


(Ⅰ)求证:平面PBD⊥平面ABD;
(Ⅱ)求二面角A-PB-D的余弦值.

15.
某项研究性课题由一个团队完成,团队由一个主持人和若干个助手组成,助手分固定和临时两种,每个固定助手的工资为3000元/月,当固定助手人手不够时,需要招聘临时助手,每个临时助手的工资为4000元/月,现在搜集并整理了以往的20个团队需要的助手数;得到如图柱状图.

记n为提供给一个团队的固定助手数(提供的每个固定助手均按3000元/月的标准支付工资).x为一个团队需要的助手数,y为支付给一个团队的助手的月工资总额(单位:元)
(Ⅰ)当n=4时,求y关于x的函数关系式;
(Ⅱ)假设这20个团队中的每一个团队都提供4个固定助手或都提供5个固定助手,分别计算这20个团队每月支付给助手的工资总额,以此作为决策依据,判断每一个团队提供4个固定助手划算还是提供5个固定助手划算;
(Ⅲ)以这20个团队需要助手数的频率代替一个团队需要助手数的概率,若40个团队中需要5个以下(不包括5个)助手数的团队个数记为X,求E(X).

记n为提供给一个团队的固定助手数(提供的每个固定助手均按3000元/月的标准支付工资).x为一个团队需要的助手数,y为支付给一个团队的助手的月工资总额(单位:元)
(Ⅰ)当n=4时,求y关于x的函数关系式;
(Ⅱ)假设这20个团队中的每一个团队都提供4个固定助手或都提供5个固定助手,分别计算这20个团队每月支付给助手的工资总额,以此作为决策依据,判断每一个团队提供4个固定助手划算还是提供5个固定助手划算;
(Ⅲ)以这20个团队需要助手数的频率代替一个团队需要助手数的概率,若40个团队中需要5个以下(不包括5个)助手数的团队个数记为X,求E(X).
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15