1.单选题- (共9题)
1.
适合下列条件的△ABC中,直角三角形的个数为( )
①a=3,b=4,c=5; ②a=6,∠A=45°;③a=2,b=2,c=2
; ④∠A=38°,∠B=52°.
①a=3,b=4,c=5; ②a=6,∠A=45°;③a=2,b=2,c=2

A.1个 | B.2个 | C.3个 | D.4个 |
6.
如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为( )


A.6cm2 | B.30cm2 | C.24cm2 | D.36cm2 |
2.选择题- (共3题)
3.填空题- (共3题)
14.
如图,在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________ ;

4.解答题- (共7题)
16.
如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东
方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.


19.
省道S226在我县境内某路段实行限速,机动车辆行驶速度不得超过60km/h,如图,一辆小汽车在这段路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方36m的C处,过了3s后,测得小汽车与车速检测仪间距离为60m,这辆小汽车超速了吗?

20.
如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.

(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;
(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的长,再计算三角形的面积.

(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;
(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的长,再计算三角形的面积.
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:2
7星难题:0
8星难题:1
9星难题:16