1.单选题- (共9题)
4.
如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C→B→A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象表示△ADP的面积y关于x的函数关系的是( )


A.![]() | B.![]() | C.![]() | D.![]() |
7.
在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的( )
A.平均数 | B.中位数 | C.众数 | D.方差 |
2.选择题- (共3题)
11.下列反应中,既属于中和反应又属于复分解反应的是{#blank#}1{#/blank#}
A.SO2+2NaOH=Na2SO3+H2O
B.CuSO4+2NaOH=Cu(OH)2↓+Na2SO4
C.2NaOH+H2SO4=Na2SO4+2H2O
D.{#blank#}2{#/blank#}
12.下列反应中,既属于中和反应又属于复分解反应的是{#blank#}1{#/blank#}
A.SO2+2NaOH=Na2SO3+H2O
B.CuSO4+2NaOH=Cu(OH)2↓+Na2SO4
C.2NaOH+H2SO4=Na2SO4+2H2O
D.{#blank#}2{#/blank#}
3.填空题- (共5题)
17.
如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,请写出所有满足条件的点B的坐标__________.

4.解答题- (共7题)
18.
在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:
(1)A、C两村间的距离为 km,a= ;
(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?
(1)A、C两村间的距离为 km,a= ;
(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?

21.
正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图①所示,直线l经过A、C两点.

(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;
(2)如图②,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点.
①请求出|BE+DE|的最小值和此时点E的坐标;
②若将点D沿x轴翻折到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标.

(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;
(2)如图②,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点.
①请求出|BE+DE|的最小值和此时点E的坐标;
②若将点D沿x轴翻折到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标.
22.
如图,已知直线CB∥OA,∠C=∠OAB=100°,点E、F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.

(1)用含有α的代数式表示∠COE的度数;
(2)若沿水平方向向右平行移动AB,则∠OBC∶∠OFC的值是否发生变化?若变化,找出变化规律;若不变,求其比值.

(1)用含有α的代数式表示∠COE的度数;
(2)若沿水平方向向右平行移动AB,则∠OBC∶∠OFC的值是否发生变化?若变化,找出变化规律;若不变,求其比值.
23.
为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.

(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:

(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.

(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:

(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:10
7星难题:0
8星难题:2
9星难题:6