1.单选题- (共9题)
5.
对于平面直角坐标系中任意两点M(x1, y1),N(x2,y2),称|x1﹣x2|+|y1﹣y2|为M,N两点的勾股距离,记作:d(M,N).如:M(2,﹣3),N(1,4),则d(M,N)=|2-1|+|-3-4|="8." 若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的勾股距离.则P(-3,2)到直线
的勾股距离为( )

A.![]() | B.![]() | C.3 | D.4 |
6.
下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )
A.1cm,2cm,3cm | B.2cm,,2cm,4cm |
C.2cm,3cm,4cm | D.1cm,2cm,5cm |
2.填空题- (共7题)
12.
如图,点A2,A4…分别是x轴上的点,点A1,A3,A5,…分别是射线OA2n-1上的点,△OA1A2,△OA2A3,△OA3A4,…分别是以OA2,OA3,OA4 ,OA5…为底边的等腰三角形,若OA2n-1与x轴正半轴的夹角为30°,OA1=1,则可求得点A2的坐标是________;A2n-1的坐标_______.

15.
在所给的8×6网格图中,横竖每相邻两点间的长度均为1,以这些点为顶点的三角形称为网格三角形,请找出点M,使以A,B,M为顶点的网格三角形是直角三角形,这样的点M有_______个.

3.解答题- (共6题)
18.
如图,在平面直角坐标系内,四边形OECB的顶点坐标分别是:B(2,5),C(8,5),E(10,0),点P(x,0)是线段OE上一点,设四边形BPEC的面积为S.

(1)过点C作CD⊥x轴于点E,则CD= , 用含x的代数式表示PE= .
(2)求S与x的函数关系.
(3)当S=30时,直接写出线段PE与PB的长.

(1)过点C作CD⊥x轴于点E,则CD= , 用含x的代数式表示PE= .
(2)求S与x的函数关系.
(3)当S=30时,直接写出线段PE与PB的长.
19.
如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4).
(1)求直线AB的表达式;
(2)若直线y=﹣2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式kx+b>﹣2x﹣4的解集.
(1)求直线AB的表达式;
(2)若直线y=﹣2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式kx+b>﹣2x﹣4的解集.

20.
(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;
(模型应用)
(2)如图2,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,过点B作线段BC⊥AB且BC=AB,直线AC交x轴于点D.
①求点C的坐标,并直接写出直线AC的函数关系式;
②若点Q是图2中坐标平面内一点,当以点A,D,Q为顶点的三角形是等腰直角三角形时,直接写出点Q的坐标.

(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;
(模型应用)
(2)如图2,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,过点B作线段BC⊥AB且BC=AB,直线AC交x轴于点D.
①求点C的坐标,并直接写出直线AC的函数关系式;
②若点Q是图2中坐标平面内一点,当以点A,D,Q为顶点的三角形是等腰直角三角形时,直接写出点Q的坐标.


试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(7道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:9
9星难题:5