1.单选题- (共9题)
2.
《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )
A.
B.
C.
D. 
A.




6.
据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是( )
A.6.8×109元 | B.6.8×108元 | C.6.8×107元 | D.6.8×106元 |
2.选择题- (共2题)
3.填空题- (共2题)
4.解答题- (共4题)
15.
为了积极响应我市“打赢蓝天保卫战”的倡议,秉承“低碳生活,绿色出行”的公益理念,越来越多的居民选择共享单车作为出行的交通工具.2018年1月,某公司向市场新投放共享单车640辆.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A、B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆,假设所进车辆全部售完,为了使利润最大,该商城应如何进货?并求出最大利润值.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A、B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆,假设所进车辆全部售完,为了使利润最大,该商城应如何进货?并求出最大利润值.
16.
定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.
(1)已知点M、N是线段AB的勾股点,若AM=1,MN=2,求BN的长;
(2)如图2,点P(a,b)是反比例函数y=
(x>0)上的动点,直线y=﹣x+2与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F.证明:E、F是线段AB的勾股点;
(3)如图3,已知一次函数y=﹣x+3与坐标轴交于A、B两点,与二次函数y=x2﹣4x+m交于C、D两点,若C、D是线段AB的勾股点,求m的值.
(1)已知点M、N是线段AB的勾股点,若AM=1,MN=2,求BN的长;
(2)如图2,点P(a,b)是反比例函数y=

(3)如图3,已知一次函数y=﹣x+3与坐标轴交于A、B两点,与二次函数y=x2﹣4x+m交于C、D两点,若C、D是线段AB的勾股点,求m的值.

17.
如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(﹣4,0)、(4,0),C(m,0)是线段AB上一动点(与A、B两点不重合),抛物线l1:y=ax2+b1x+c1(a>0)经过点A、C,顶点为D,抛物线l2:y=ax2+b2x+c2(a>0)经过点C、B,顶点为E,直线AD、BE相交于F.
(1)若a=
,m=﹣1,求抛物线l1、l2的解析式;
(2)若a=1,∠AFB=90°,求m的值;
(3)如图2,连接DC、EC,记△DAC的面积为S1,△ECB的面积为S2,△FAB的面积为S,问是否存在点C使得2S1•S2=a•S,若存在,请求出C的坐标;若不存在,请说明理由.
(1)若a=

(2)若a=1,∠AFB=90°,求m的值;
(3)如图2,连接DC、EC,记△DAC的面积为S1,△ECB的面积为S2,△FAB的面积为S,问是否存在点C使得2S1•S2=a•S,若存在,请求出C的坐标;若不存在,请说明理由.

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(2道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:0
9星难题:6