1.单选题- (共8题)
1.
已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c=0无实数根;③a-b+c≥0;④
的最小值为3,其中正确结论的个数是( )

A.1 个 | B.2 个 | C.3 个 | D.4 个 |
2.
如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是( )

A. 45° B. 55° C. 65° D. 75°

A. 45° B. 55° C. 65° D. 75°
4.
如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( )


A.第24天的销售量为300件 |
B.第10天销售一件产品的利润是15元 |
C.第27天的日销售利润是1250元 |
D.第15天与第30天的日销售量相等 |
2.填空题- (共3题)
3.解答题- (共5题)
12.
定义:若存在实数对坐标(x,y)同时满足一次函数y=px+q和反比例函数y=
,则二次函数y=px2+qx−k为一次函数和反比例函数的“联姻”函数.
(1)试判断(需要写出判断过程):一次函数y=−x+3和反比例函数y=
是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标.
(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y=
存在“联姻”函数y=(m+t)x2+(10m−t)x−2015,求m的值.
(3)若同时存在两组实数对坐标[x1,y1]和[x2,y2]使一次函数y=ax+2b和反比例函数y=−
为“联姻”函数,其中,实数a>b>c,a+b+c=0,设
,求L的取值范围.

(1)试判断(需要写出判断过程):一次函数y=−x+3和反比例函数y=

(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y=

(3)若同时存在两组实数对坐标[x1,y1]和[x2,y2]使一次函数y=ax+2b和反比例函数y=−


14.
如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.
(1)求证:EM是⊙O的切线;
(2)若∠A=∠E,BC=
,求阴影部分的面积.(结果保留
和根号).
(1)求证:EM是⊙O的切线;
(2)若∠A=∠E,BC=



15.
如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.
(1)求m、n的值及该抛物线的解析式;
(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;
(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
(1)求m、n的值及该抛物线的解析式;
(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;
(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:7