1.单选题- (共9题)
5.
世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
A.5.6×10﹣1 | B.5.6×10﹣2 | C.5.6×10﹣3 | D.0.56×10﹣1 |
8.
下列有关三角形全等的判定,错误的是( )
A. 三边分别相等的两个三角形全等(SSS)
B. 两边和它们的夹角分别相等的两个三角形全等(SAS)
C. 两角和它们的夹边分别相等的两个三角形全等(ASA)
D. 两边及其中一边的对角对应相等的两个三角形全等(SSA)
A. 三边分别相等的两个三角形全等(SSS)
B. 两边和它们的夹角分别相等的两个三角形全等(SAS)
C. 两角和它们的夹边分别相等的两个三角形全等(ASA)
D. 两边及其中一边的对角对应相等的两个三角形全等(SSA)
2.填空题- (共4题)
3.解答题- (共14题)
22.
如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.
(1)判断四边形EFDG的形状,并证明;
(2)求FD的长;
(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.
(1)判断四边形EFDG的形状,并证明;
(2)求FD的长;
(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.

23.
(1)如图1,D是等边三角形ABC边BA上一动点(点D)与点B不重合,连接CD,以CD为边在BC上方作等边三角形DCE,连接AE,你能发现AE与BD之间的数量关系吗?并证明你发现的结论.
(2)如图二,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCE和等边三角形DCF,连接AE,BF,探究AE,BF与AB有何数量关系?并证明你探究的结论.
(3)如图三,当动点D在等边三角形ABC边BA的延长线上运动时,其他作法与图2相同,若AE=8,BF=2,请直接写出AB= .
(2)如图二,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCE和等边三角形DCF,连接AE,BF,探究AE,BF与AB有何数量关系?并证明你探究的结论.
(3)如图三,当动点D在等边三角形ABC边BA的延长线上运动时,其他作法与图2相同,若AE=8,BF=2,请直接写出AB= .

24.
如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的长度.
(1)求证:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的长度.

25.
如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.
(1)写出一个符合题意的点P的坐标 ;
(2)请在图中画出所有符合条件的△AOP.
(1)写出一个符合题意的点P的坐标 ;
(2)请在图中画出所有符合条件的△AOP.

26.
图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(14道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:21
7星难题:0
8星难题:2
9星难题:3