1.单选题- (共9题)
6.
如图,△ABC是等边三角形,AD是BC边上的中线,点E在AC上,∠CDE=25°,现将△CDE沿直线DE翻折得到△FDE,连接BF,则∠BFE的度数是 ( )


A.60° | B.68° | C.75° | D.85° |
9.
如图,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为( )


A.5 | B.7 | C.12 | D.![]() |
2.填空题- (共8题)
13.
如图,已知△ABC中高AD恰好平分边BC,∠B=30°,点P是BA延长线上一点,点O是线段AD上一点且OP=OC,下面的结论: ①∠APO+∠DCO=30°②△OPC是等边三角形③AC=AO+AP④
,其中正确的为__________________.(填序号)


17.
在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是________分米.

3.解答题- (共7题)
21.
如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.
(1)若∠A = 40°,求∠DCB的度数.
(2)若AE=4,△DCB的周长为13,求△ABC的周长.
(1)若∠A = 40°,求∠DCB的度数.
(2)若AE=4,△DCB的周长为13,求△ABC的周长.

22.
如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.
(1)求证:△DBN≌△DCM;
(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.
(1)求证:△DBN≌△DCM;
(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.

23.
“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过60千米/时.这时一辆小汽车在一条城市街道直路上行驶,某一时刻刚好行驶到路对面车速检测仪A正前方50米C处,过了8秒后,测得小汽车位置B与车速检测仪A之间的距离为130米,这辆小汽车超速了吗?请说明理由.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:9