1.单选题- (共10题)
8.
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若
,大正方形的面积为13,则小正方形的面积为( )



A.3 | B.4 | C.5 | D.6 |
2.选择题- (共1题)
3.填空题- (共5题)
4.解答题- (共8题)
19.
探索与应用.先填写下表,通过观察后再回答问题:

(1)表格中x= ;y= ;
(2)从表格中探究a与
数位的规律,并利用这个规律解决下面两个问题:
①已知
≈3.16,则
≈ ;②已知
=1.8,若
=180,则a= ;
(3)拓展:已知
,若
,则z= 。

(1)表格中x= ;y= ;
(2)从表格中探究a与

①已知




(3)拓展:已知


21.
在数学实验课上,李静同学剪了两张直角三角形纸片,进行如下的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为 ;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为 ;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:9