1.单选题- (共10题)
7.
如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若CD=
,则BH=3;⑤若DF⊥BE于点F,则AE-FH=DF;正确的有( )个.



A.5 | B.4 | C.3 | D.2 |
2.选择题- (共3题)
11.
阅读下面的材料,写出一个从材料的角度探究出的道理。
一杯水的重量
老师拿到一杯水,问“这杯水的重量是200克,各位可以将这杯水端在手中多久?”很多人都笑了:“200克而已,拿多久又会怎么样?”
老师没有笑,他接着说:“拿一分钟,各位一定觉得没问题;拿一个小时,可能觉得手酸;拿一天呢?一个星期呢?那可能得叫救护车了。”大家又笑了,不过这次是赞同的笑。
老师继续说道:“一杯水,随着所拿时间的延长,它的重量也在发生变化,其实这杯水很轻,但你拿得越久,就觉得越重。所以,我们必须适时放下这杯水,休息一会儿再拿起,只有这样我们才能拿得更久。”
其实,在我们的人生中也经常会遇到这样一杯“水”,我们该怎样对待呢?
3.填空题- (共4题)
16.
在坐标平面内,从点(x,y)移动到点(x+1,y+2)的运动称为一次A类跳马,从点(x,y)移动到点(x+2,y+1)的运动称为一次B类跳马.现在从原点开始出发,连续10次跳马,每次跳马采取A类或B类跳马,最后恰好落在直线
上,则最后落马的坐标是_______.

4.解答题- (共6题)
21.
某地台风带来严重灾害,该市组织20辆汽车装食品、药品、生活用品三种救灾物质共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同种物质且必须装满.根据表格提供的信息,解答下列问题:
(1)若装食品的车辆是5辆,装药品的车辆为__________辆;
(2)设装食品的车辆为x辆,装药品的车辆为y辆,求y与x的函数关系式;
(3)如果装食品的车辆不少于7辆,装药品的车辆不少于4辆,那么车辆的安排有几种方案?请写出每种方案并求出最少费用.
物资种类 | 食品 | 药品 | 生活用品 |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨所需运费(元/吨) | 120 | 160 | 100 |
(1)若装食品的车辆是5辆,装药品的车辆为__________辆;
(2)设装食品的车辆为x辆,装药品的车辆为y辆,求y与x的函数关系式;
(3)如果装食品的车辆不少于7辆,装药品的车辆不少于4辆,那么车辆的安排有几种方案?请写出每种方案并求出最少费用.
22.
如图,在平面直角坐标系中,有一条直线l:
与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.

(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标 ;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.


(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标 ;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:2
9星难题:14