1.选择题- (共1题)
2.单选题- (共4题)
3.
四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 | B.4种 | C.5种 | D.6种 |
3.填空题- (共4题)
6.
图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).

9.
如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.
(1)若AB=DC,则四边形ABCD的面积S=__;
(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).
(1)若AB=DC,则四边形ABCD的面积S=__;
(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).

4.解答题- (共4题)
10.
我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

11.
如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

试卷分析
-
【1】题量占比
选择题:(1道)
单选题:(4道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:0
9星难题:7