1.单选题- (共8题)
6.
如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么
的值为( )



A.13 | B.19 | C.25 | D.169 |
7.
△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13其中能判断△ABC是直角三角形的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
8.
如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()


A.![]() | B.4cm | C.![]() | D.3cm |
2.填空题- (共3题)
3.解答题- (共6题)
16.
如下图,等腰Rt△ABC和等腰Rt△EDB,AC=BC,DE=BD,∠ACB=∠EDB=90°,P为AE的中点
(1) 连接PC、PD,则PC、PD的位置关系是____________,数量关系是___________,并证明你的结论
(2) 当E在线段AB上变化时,其它条件不变,作EF⊥BC于F,连接PF,试判断△PCF的形状
(3) 在点E运动过程中,△PCF是否可为等边三角形?若可以,试求△ACB与△EDB的两直角边之比

(1) 连接PC、PD,则PC、PD的位置关系是____________,数量关系是___________,并证明你的结论
(2) 当E在线段AB上变化时,其它条件不变,作EF⊥BC于F,连接PF,试判断△PCF的形状
(3) 在点E运动过程中,△PCF是否可为等边三角形?若可以,试求△ACB与△EDB的两直角边之比


试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:2
7星难题:0
8星难题:7
9星难题:4