1.单选题- (共2题)
1.
将抛物线y=(x﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )
A.y=(x+1)2﹣13 | B.y=(x﹣5)2﹣3 |
C.y=(x﹣5)2﹣13 | D.y=(x+1)2﹣3 |
2.填空题- (共1题)
3.解答题- (共5题)
5.
如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
(1)该二次函数的关系式是 ,顶点坐标 .
(2)根据图象回答:当x满足 时,y>0;
(3)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标 .
(1)该二次函数的关系式是 ,顶点坐标 .
(2)根据图象回答:当x满足 时,y>0;
(3)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标 .

6.
某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)当售价定为多少元时,每天的利润为140元?
(2)写出每天所得的利润y(元)与售价x(元件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)
(1)当售价定为多少元时,每天的利润为140元?
(2)写出每天所得的利润y(元)与售价x(元件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)
7.
如图,抛物线y=
x2+mx+n与直线y=﹣
x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(1)求抛物线的关系式和tan∠BAC的值;
(2)P为抛物线上一动点,连接PA,过点P作PQ⊥OA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)在AB上找一点M,使得OM+DM的值最小,直接写出点M的坐标.


(1)求抛物线的关系式和tan∠BAC的值;
(2)P为抛物线上一动点,连接PA,过点P作PQ⊥OA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)在AB上找一点M,使得OM+DM的值最小,直接写出点M的坐标.

试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:1
9星难题:0