1.单选题- (共10题)
1.
某商店现在的售价为
每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为( )

A.56元 | B.57元 | C.59元 | D.57元或59元 |
4.
如图,已知直线y=﹣x+2 与x 轴交于点A,与y 轴交于点B,以点A 为圆心,AB 长为半径画弧,交x 轴于点C,则点C 的坐标为( )

A. (﹣1,0) B. (﹣2
,0) C. (2
﹣2,0) D. (2﹣2
,0)

A. (﹣1,0) B. (﹣2



10.
某池塘中放养了鲫鱼 1000 条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼 200 条,鲮鱼 400 条,估计池塘中原来放养了鲮鱼( )
A.500 条 | B.1000 条 | C.2000 条 | D.3000 条 |
2.填空题- (共3题)
12.
如图,一根长为 a 的竹竿 AB 斜靠在墙上,竹竿 AB 的倾斜角为α,当竹竿的顶端 A 下滑到点 A'时,竹竿的另一端 B 向右滑到了点 B',此时倾斜角为β.
(1)线段 AA'的长为_____ .
(2)当竹竿 AB 滑到 A'B'位置时,AB 的中点 P 滑到了 P',位置,则点 P 所经过的路线长为___________ (两小题均用含 a,α,β的代数式表示)
(1)线段 AA'的长为
(2)当竹竿 AB 滑到 A'B'位置时,AB 的中点 P 滑到了 P',位置,则点 P 所经过的路线长为

3.解答题- (共6题)
16.
商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
17.
如图,抛物线y=﹣x2﹣2x+3 的图象与x 轴交于A、B 两点(点A 在点B 的左边),与y轴交于点C,点D 为抛物线的顶点.
(1)求点A、B、C 的坐标;
(2)点M(m,0)为线段AB 上一点(点M 不与点A、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E,与抛物线交于点P,过点P 作PQ∥AB 交抛物线于点Q,过点Q 作QN⊥x 轴于点N,可得矩形PQNM.如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;
(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;
(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG=2
DQ,求点F 的坐标.
(1)求点A、B、C 的坐标;
(2)点M(m,0)为线段AB 上一点(点M 不与点A、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E,与抛物线交于点P,过点P 作PQ∥AB 交抛物线于点Q,过点Q 作QN⊥x 轴于点N,可得矩形PQNM.如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;
(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;
(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG=2


18.
如图,△ABC 是等边三角形,D 为 AC 上一点连接 BD,旋转△BCD,使点 B 落在 BC上方的点 E 处,点 C 落在 BC 上的点 F 处,点 D 落在点 C 处,连接 AE.
求证:四边形 ABFE 是平行四边形.
求证:四边形 ABFE 是平行四边形.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:0
9星难题:8