1.单选题- (共8题)
5.
对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限 |
B.函数的图象与x轴的交点坐标是(0,4) |
C.函数的图象向下平移4个单位长度得y=﹣2x的图象 |
D.函数值随自变量的增大而减小 |
6.
(卷号)1574244236926976
(题号)1574244242350080
(题文)
如图,矩形
中,
,
,
是
的中点,点
在矩形的边上沿
运动,则
的面积
与点
经过的路程
之间的函数关系用图象表示大致是下图中的( )

(题号)1574244242350080
(题文)
如图,矩形












A.![]() | B.![]() | C.![]() | D.![]() |
8.
小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()


A.①② | B.②③ | C.①③ | D.②④ |
2.填空题- (共5题)
10.
在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=_____.

12.
在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高__米.

13.
如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8= .

3.解答题- (共5题)
16.
如图,直线
的解析表达式为:y=-3x+3,且
与x轴交于点D,直线
经过点A,B,直线
,
交于点





A.![]() (1)求点D的坐标; (2)求直线 ![]() (3)求△ADC的面积; (4)在直线 ![]() |
18.
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:2
9星难题:6