1.单选题- (共5题)
2.选择题- (共3题)
3.填空题- (共8题)
4.解答题- (共7题)
18.
荆州市精准扶贫工作进入攻坚阶段.某村在工作组长期的技术资金支持下,成立了果农合作社,大力发展经济作物,其中樱桃和枇杷两种果树的种植已初具规模,请阅读以下信息.
信息1:该村小李今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍.
信息2:小李今年樱桃销量比去年减少了m%,枇杷销量比去年增加了2m%.若樱桃售价与去年相同,枇杷售价比去年减少了m%,则今年两种水果销售总额与去年两种水果的销售总额相同.
信息3:该村果农合作社共收获樱桃2800千克,经市场调研,樱桃市场需求量y(千克)与售价x(元/千克)之间的关系为:y=﹣100x+4800(8≤x≤38),因保质期和储存条件方面的原因剩余水果将被无偿处理销毁.
请解决以下问题:
(1)求小李今年收获樱桃至少多少千克?
(2)请补全信息2中的表格,求m的值.
(3)若樱桃种植成本为8元/千克,不计其它费用.求今年该果农合作社出售樱桃所获得的最大利润?
信息1:该村小李今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍.
信息2:小李今年樱桃销量比去年减少了m%,枇杷销量比去年增加了2m%.若樱桃售价与去年相同,枇杷售价比去年减少了m%,则今年两种水果销售总额与去年两种水果的销售总额相同.
项目 年份 | ![]() | 樱桃售价(元) | 枇杷销量(千克) | 枇杷售价(元) |
去年 | 100 | 30 | 200 | 20 |
今年 | | | | |
信息3:该村果农合作社共收获樱桃2800千克,经市场调研,樱桃市场需求量y(千克)与售价x(元/千克)之间的关系为:y=﹣100x+4800(8≤x≤38),因保质期和储存条件方面的原因剩余水果将被无偿处理销毁.
请解决以下问题:
(1)求小李今年收获樱桃至少多少千克?
(2)请补全信息2中的表格,求m的值.
(3)若樱桃种植成本为8元/千克,不计其它费用.求今年该果农合作社出售樱桃所获得的最大利润?
19.
如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.

(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.

(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.
20.
如图,正方形ABCD与正三角形ADE边长相等,点O是线段AB的中点,请仅用无刻度的直尺按下列要求画图(无需写画法,但要保留P作图痕迹).
(1)在图①中,画出线段CD的中点P;
(2)在图②中,画出线段BC的中点Q.
(1)在图①中,画出线段CD的中点P;
(2)在图②中,画出线段BC的中点Q.

21.
2019年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:

(1)求本次竞赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)如果该校八年级有800人,请你估计获奖的同学共有多少人?

(1)求本次竞赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)如果该校八年级有800人,请你估计获奖的同学共有多少人?
22.
如图,在平行四边形ABCD中,DB=DA,∠ADB的角平分线与AB相交于点F,与CB的延长线相交于点E连接AE.
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(3道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:4
7星难题:0
8星难题:6
9星难题:9