1.单选题- (共8题)
2.
如图,已知正比例函数
与一次函数
的图象交于点P.下面有四个结论:①k>0;②b>0;③当x>0时,
>0;④当x<-2时,kx>-x+b.其中正确的是( )





A.①③ | B.②③ | C.③④ | D.①④ |
4.
如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么平行四边形ABCD的周长是( )


A.8 | B.12 | C.16 | D.20 |
5.
如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以点A为圆心,AC长为半径画弧,交数轴于点M,则点M对应的数是( )


A.![]() | B.![]() | C.![]() | D.![]() |
7.
有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的( )
A.平均数 | B.中位数 | C.众数 | D.方差 |
8.
在数学活动课上,老师让同学们判断一个四边形门框是不是矩形,下面是某合作学习小组的4名同学设计的方案,其中正确的是( )
A.测量对角线是否互相平分 | B.测量两组对边是否分别相等 |
C.测量其中三个角是否都为直角 | D.测量一组对角是否都为直角 |
2.填空题- (共8题)
16.
我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.

3.解答题- (共12题)
19.
列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
20.
现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)在(1)的条件下,小明选择哪家快递公司更省钱?
(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)在(1)的条件下,小明选择哪家快递公司更省钱?
21.
有这样一个问题:探究函数
的图象与性质.
小亮根据学习函数的经验,对函数
的图象与性质进行了探究。
下面是小亮的探究过程,请补充完整:
(1)函数
中自变量x的取值范围是_________.
(2)下表是y与x的几组对应值.
求m的值;
(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.

小亮根据学习函数的经验,对函数

下面是小亮的探究过程,请补充完整:
(1)函数

(2)下表是y与x的几组对应值.
x | … | -3 | -2 | -1 | 0 | ![]() | ![]() | 2 | 3 | 4 | 5 | … |
y | … | -![]() | -![]() | -4 | -5 | -7 | m | -1 | -2 | -![]() | -![]() | … |
求m的值;
(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.

22.
对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.

24.
如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

25.
在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,E

A. (1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系; (2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论; (3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可) |

26.
下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
作法:如图

①以点B为圆心,AC长为半径作弧;
②以点C为圆心,AB长为半径作弧;
③两弧交于点D,A,D在BC同侧;
④连接AD,CD.
所以四边形ABCD是矩形,
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:链接BD.
∵AB=________,AC=__________,BC=BC
∴ΔABC≌ΔDCB
∴∠ABC=∠DCB=90°
∴AB∥CD.
∴四边形ABCD是平行四边形
∵∠ABC=90°
∴四边形ABCD是矩形.(_______________)(填推理的依据)
作法:如图

①以点B为圆心,AC长为半径作弧;
②以点C为圆心,AB长为半径作弧;
③两弧交于点D,A,D在BC同侧;
④连接AD,CD.
所以四边形ABCD是矩形,
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:链接BD.
∵AB=________,AC=__________,BC=BC
∴ΔABC≌ΔDCB
∴∠ABC=∠DCB=90°
∴AB∥CD.
∴四边形ABCD是平行四边形
∵∠ABC=90°
∴四边形ABCD是矩形.(_______________)(填推理的依据)
27.
甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
| 平均数 | 方差 | 中位数 | 命中9环以上的次数(包括9环) |
甲 | 7 | 1.2 | | 1 |
乙 | | 5.4 | 7.5 | |
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(8道)
解答题:(12道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:22
7星难题:0
8星难题:0
9星难题:5