1.单选题- (共4题)
1.
点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A.y1=y2>y3 | B.y1>y2>y3 | C.y3>y2>y1 | D.y3>y1=y2 |
2.
在同一直角坐标系中,二次函数y=x2与反比例函数y
(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )



A.1 | B.m | C.m2 | D.![]() |
2.填空题- (共4题)
3.解答题- (共7题)
9.
某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

10.
已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).

(1)求二次函数的解析式;
(2)如图,过点E(O,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D。
①当CD=3时,求该一次函数的解析式;
②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得
=tS1S3,都成立?若存在,求出t的值;若不存在,说明理由。

(1)求二次函数的解析式;
(2)如图,过点E(O,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D。
①当CD=3时,求该一次函数的解析式;
②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得

11.
矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=
(k>0)的图象与边AC交于点

A.![]() (1)当点F运动到边BC的中点时,求点E的坐标; (2)连接EF、AB,求证:EF∥AB; (3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式. |
12.
已知反比例函数的图象经过点A(2,6).
(1)求这个反比例函数的解析式;
(2)这个函数的图象位于哪些象限?y随x的增大如何变化?
(3)点B(3,4),C(5,2),D(
,
)是否在这个函数图象上?为什么?
(1)求这个反比例函数的解析式;
(2)这个函数的图象位于哪些象限?y随x的增大如何变化?
(3)点B(3,4),C(5,2),D(


试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:7