1.单选题- (共7题)
4.
已知a、b、c为△ABC的三边长,下列条件不能判定△ABC为直角三角形的是( )
A.a:b:c=3:4:5 | B.a:b:c=5:12:13 |
C.a:b:c=7:24:25 | D.a:b:c=![]() ![]() |
2.填空题- (共9题)
9.
A、B两车同时从甲地出发匀速前往乙地,A车在途中出了故障,修好车后原速返回,B车到达乙地后立即原速返回,B车比A车早40分钟返回甲地,A、B两车各自行驶的路程y(千米)与所行时间x(时)之间的图象如图所示,则两车第二次相遇时,B车行驶了_____小时.

10.
某花店有数量相同的甲、乙两种花盆,但甲乙两种花盆中花的数量不同;盆中种的花是由A、B、C三种花搭配而成的,其中A花占60%,B花占28%,C花占12%,已知甲种花盆中A花占70%,B花占10%,C花占20%,乙种花盆中只有A、B两种花,则乙种花盆中A花和B花数量的比为_____.
13.
把两个同样大小的等腰直角三角形按如图所示的方式放置,其中一个等腰直角三角形的一个锐角顶点与另一个等腰直角三角形的直角顶点A重合,且另三个锐角顶点点B,C,D在同一直线上.若AB=2,则BD=_____.

14.
如图,△AOB的边OB在x轴上,AC⊥x轴于C,D为AC上一点,将△CBD沿BD翻折,使点C落在AB边上的E点.已知∠AOB=60°,AO=4
,点B的坐标为(8+2
,0),则点D的坐标为_____.



3.解答题- (共6题)
17.
一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=
,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.
(1)最大的四位“半期数”为 ;“半期数”3247的“伴随数”是 .
(2)已知四位数P=
是“半期数”,三位数Q=
,且441Q﹣4P=88991,求F(P')的最大值.

(1)最大的四位“半期数”为 ;“半期数”3247的“伴随数”是 .
(2)已知四位数P=


18.
今年“五一节”前,某商场用60万元购进某种商品,该商品有甲、乙两种包装共500件,其中每件甲包装中有75个A种产品,每个A产品的成本为12元;每件乙包装中有100个B产品,每个B种产品的成本为14元.商场将A产品标价定为每个18元,B产品标价定为每个20元.
(1)甲、乙两种包装的产品各有多少件?
(2)“五一节”商场促销,将A产品按原定标价打9折销售,B种产品按原定标价打8.5折销售,“五一节”期间该产品全部卖完,该商场销售该商品共获利多少元?
(1)甲、乙两种包装的产品各有多少件?
(2)“五一节”商场促销,将A产品按原定标价打9折销售,B种产品按原定标价打8.5折销售,“五一节”期间该产品全部卖完,该商场销售该商品共获利多少元?
19.
如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于点B、C,与直线OA交于点
(1)分别求出直线AB、AO的解析式;
(2)求△ABO的面积.
A.已知点A的坐标为(﹣3,5),OC=4. |
(2)求△ABO的面积.

20.
如图,在平面直角坐标系中,直线AB:y=﹣
x+
与直线AC:y=
+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、




A. (1)求点A的坐标; (2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值; (3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标. |

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(9道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:12
7星难题:0
8星难题:3
9星难题:5