1.单选题- (共13题)
1.
如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:① x2+y2=49;② x﹣y=2;③ x+y=9;④ 2xy+4=49;其中说法正确的是( )


A.①② | B.①②④ |
C.①②③ | D.①②③④ |
6.
如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是( )


A.AO=OD | B.EF=AD | C.S△AEO=S△AOF | D.S△ABC=2S△AEF |
7.
如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积Sn=( )


A.2n | B.![]() | C.![]() | D.![]() |
13.
关于四边形ABCD的叙述,正确的是( )
A.对角线垂直的四边形ABCD是菱形 | B.对角线相等的四边形ABCD是矩形 |
C.对角线互相平分的四边形ABCD是平行四边形 | D.对角线垂直的平行四边形ABCD是矩形 |
2.填空题- (共8题)
16.
阅读下列一段文字,然后回答下列问题.
已知在平面内有两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=
,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2﹣x1|或|y2﹣y1|.已知一个三角形各顶点坐标为D(1,6)、E(4,2),平面直角坐标系中,在x轴上找一点P,使PD+PE的长度最短,则PD+PE的最短长度为__________
已知在平面内有两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=

3.解答题- (共5题)
23.
如图,在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上

(1) 填空∠ABC=___________
(2) 若点A在网格所在的坐标平面内的坐标为(1,-2),请建立平面直角坐标系,D是平面直角坐标系中一点,并作出以A、B、C、D四个点为顶点的平行四边形,直接写出满足条件的D点的坐标

(1) 填空∠ABC=___________
(2) 若点A在网格所在的坐标平面内的坐标为(1,-2),请建立平面直角坐标系,D是平面直角坐标系中一点,并作出以A、B、C、D四个点为顶点的平行四边形,直接写出满足条件的D点的坐标
24.
如图,四边形ABCD是矩形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(1)证明:AM=AD+M

(1)证明:AM=AD+M
A. (2)若四边形ABCD是平行四边形,其它条件不变,如图,(1)中的结论是否成立? |

25.
对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
求证:(1)∠ABE=30°;
(2)四边形BFB′E为菱形.

图1 图2
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
求证:(1)∠ABE=30°;
(2)四边形BFB′E为菱形.


图1 图2
试卷分析
-
【1】题量占比
单选题:(13道)
填空题:(8道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:15
7星难题:0
8星难题:2
9星难题:9