1.单选题- (共5题)
3.
如图,矩形ABCD中,对角
线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )



A.点C | B.点O | C.点E | D.点F |
2.选择题- (共2题)
6.已知X,Y,Z,W四种元素分别是元素周期表中连续三个短周期的元素,且原子序数依次增大.X,W同主族,Y,Z为同周期的相邻元素.W原子的质子数等于Y,Z原子最外层电子数之和.Y与X形成的分子中有3个共价键.Z原子最外层电子数是次外层电子数的3倍,试推断:
3.填空题- (共6题)
12.
评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试90分,作业95分,课堂参与92分,则他的数学期末成绩为_____.
4.解答题- (共9题)
15.
某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)
| 甲种图书 | 乙种图书 |
进价(元/本) | 8 | 14 |
售价(元/本) | 18 | 26 |
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)
17.
如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B。
(1)求B点坐标;
(2)点C为x轴负半轴上一点,过点C的直线l2:
交线段AB于点D。
①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N。若
,MN=2MQ,求t的值;
②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由。

(1)求B点坐标;
(2)点C为x轴负半轴上一点,过点C的直线l2:

①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N。若

②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由。


18.
数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?

20.
某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.

(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(2道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:2
7星难题:0
8星难题:6
9星难题:10