1.单选题- (共6题)
2.
如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=
(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )

A. 减小 B. 不变 C. 增大 D. 先增大后减小


A. 减小 B. 不变 C. 增大 D. 先增大后减小
5.
下列四种调查:①调查某班学生的身高情况;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某批汽车的抗撞击能力,其中适合用全面调查方式(普查)的是( )
A.① | B.② | C.③ | D.④ |
6.
今年江都区有近8千名考生参加中考,为了了解这些考生的数学成绩,从中抽取500名考生的数学成绩进行统计分析,以下说法正确的是( )
A.这500名考生是总体的一个样本 | B.近8千名考生的数学成绩之和是总体 |
C.每位考生的数学成绩是个体 | D.样本容量是100名学生 |
2.选择题- (共6题)
12.小明发现超市里的手扶式电梯无人站在上面时运动较慢,有人站在上面时运动较快.他据此画出了如图所示的电路(R是一个压敏电阻).他分析:当人站在电梯上,R的阻值变小,电磁铁的磁性变{#blank#}1{#/blank#}(选填“强”或“弱”),衔铁与触点{#blank#}2{#/blank#}(选填“1”或“2“)接触,电动机的转速变快,电梯运行变快.
3.填空题- (共9题)
16.
某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为______
19.
如图,矩形OBCD的顶点B、D坐标分别是(8,0)、(0,4),反比例函数y=
(x>0)的图象过对角线的交点A并且与DC、BC分别交于E、F两点,连结OE、OF、EF,则△OEF的面积为______.


21.
“低碳环保,你我同行”.两年来,
扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:

根据图中的信息,解答下列问题:
(1)本次活动共有 位市民参与调查;
(2)补全条形统计图和扇形统计图;
(3)扇形统计图中A项所对应的圆心角的度数为
(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?

A.每天都用; | B.经常使用; | C.偶尔使用; | D.从未使用.将这次调查![]() |

根据图中的信息,解答下列问题:
(1)本次活动共有 位市民参与调查;
(2)补全条形统计图和扇形统计图;
(3)扇形统计图中A项所对应的圆心角的度数为
(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?
4.解答题- (共7题)
25.
如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.
(1)求点B的坐标。
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.
(1)求点B的坐标。
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.

26.
某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.
(1)列出原计划种植亩数
(亩)与平均每亩产量
(万斤)之间的函数关系式,并写出自变量
的取值范围;(总产量=亩数
平均每亩产量)
(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?
(1)列出原计划种植亩数




(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?
27.
在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线
(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由;
(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度;
(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系。

(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由;
(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度;
(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系。


试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(6道)
填空题:(9道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:1
9星难题:5