1.选择题- (共3题)
3.设椭圆 {#mathml#}{#/mathml#} + {#mathml#}{#/mathml#} =1(a>b>0)的左、右焦点分别为F1、F2,P是椭圆上一点,|PF1|=λ|PF2|( {#mathml#}{#/mathml#} ≤λ≤2),∠F1PF2= {#mathml#}{#/mathml#} ,则椭圆离心率的取值范围为( )
2.单选题- (共5题)
5.
如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是( )


A.6<t≤8 | B.6≤t≤8 | C.10<t≤12 | D.10≤t≤12 |
3.填空题- (共3题)
4.解答题- (共7题)
12.
已知直线y=x+4分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣4经过点A,和x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;
(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.
(1)求抛物线的解析式;
(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;
(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.

13.
制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

14.
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y,的对应值如下表:
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.
15.
如图,已知一次函数y=﹣x+2与反比例函数y=
与的图象交于A,B两点,与x轴交于点M,且点A的横坐标是﹣2,B点的横坐标是4.
(1)求反比例函数的解析式;
(2)求△AOM的面积;
(3)根据图象直接写出反比例函数值大于一次函数值时x的取值范围.

(1)求反比例函数的解析式;
(2)求△AOM的面积;
(3)根据图象直接写出反比例函数值大于一次函数值时x的取值范围.

16.
如图①,已知AB是⊙O的直径,点D是线段AB延长线上的一个动点,直线DF垂直于射线AB于点D,当直线DF绕点D逆时针旋转时,与⊙O交于点C,且运动过程中,保持CD=OA
(1)当直线DF与⊙O相切于点C时,求旋转角的度数;
(2)当直线DF与半圆O相交于点C时(如图②),设另一交点为E,连接AE,OC,若AE∥O
C.
①AE与OD的大小有什么关系?说明理由.
②求此时旋转角的度数.
(1)当直线DF与⊙O相切于点C时,求旋转角的度数;
(2)当直线DF与半圆O相交于点C时(如图②),设另一交点为E,连接AE,OC,若AE∥O

①AE与OD的大小有什么关系?说明理由.
②求此时旋转角的度数.

试卷分析
-
【1】题量占比
选择题:(3道)
单选题:(5道)
填空题:(3道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:0
9星难题:3