1.单选题- (共5题)
5.
如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )


A.四边形ABCD由矩形变为平行四边形 ![]() | B.BD的长度增大 |
C.四边形ABCD的面积不变 | D.四边形ABCD的周长不变 |
2.填空题- (共4题)
3.解答题- (共5题)
11.
甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s和4m/s.
(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);

(2)根据(1)中所画图象,完成下列表格:
(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;
②求甲、乙第6此相遇时t的值.
(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);

(2)根据(1)中所画图象,完成下列表格:
两人相遇次数 (单位:次) | 1 | 2 | 3 | 4 | … | n |
两人所跑路程之和(单位:m) | 100 | 300 | | | … | |
(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;
②求甲、乙第6此相遇时t的值.
12.
如图,已知二次函数
:
(
)和二次函数
:
(
)图象的顶点分别为M,N,与y轴分别交于点E,F.

(1)函数
(
)的最小值为 ,当二次函数
,
的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数
的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程
的解.







(1)函数




(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数


13.
某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.
学生家长对孩子使用手机的态度情况统计图

根据以上信息回答下列问题:
(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ;
(2)把条形统计图补充完整;
(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?
学生家长对孩子使用手机的态度情况统计图

根据以上信息回答下列问题:
(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ;
(2)把条形统计图补充完整;
(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:4
7星难题:0
8星难题:1
9星难题:7