设函数f(x)=|x﹣2|+|x﹣a|,x∈R.
(Ⅰ)求证:当a=﹣1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.
解:(Ⅰ)证明:当a=﹣1时,
f(x)=|x−2|+|
如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度v0飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A可视为质点,求
(Ⅰ)求角C的大小;
(Ⅱ)设y=﹣4 3 sin2 A2 +2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.