在平面直角坐标系xoy中,以原点o为极点,x轴的非负半轴为极轴,建立极坐标系已知直线l的方程为ρ(3cost﹣4sint)=1(t为参数),圆C的参数方程为 {x=−4+cosθy=3+sinθ (θ为参数)
(I)求直线l的直角坐标方程和圆C的普通方程:
(II)若点P是圆C上的动点,求点P到直线l的距离最小值.
已知二次函数y=-x2+m-3x+m.(1)证明:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,5),求出顶点坐标,并画出该函数图象.