题干

已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?

问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

上一题 下一题 0.0难度 选择题 更新时间:2019-08-23 12:46:19

答案(点此获取答案解析)

解:问题1:过点D作DE⊥BC于点E,
∵梯形ABCD,AD∥BC,AB⊥BC
∴四边形ABED是矩形,
∴DE=AB=2,BE=AD=1,
∴CE=BC﹣BE=2,
∴DC=2 2
∵四边形PCQD是平行四边形,
若对角线PQ、DC相等,