题干

如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.

(1)判断AF与⊙O的位置关系并说明理由;

(2)若⊙O的半径为4,AF=3,求AC的长.

上一题 下一题 0.0难度 选择题 更新时间:2017-07-30 05:56:13

答案(点此获取答案解析)

解:(1)AF为圆O的切线,理由为:

连接OC,

∵PC为圆O切线,

∴CP⊥OC,

∴∠OCP=90°,

∵OF∥BC,

∴∠AOF=∠B,∠COF=∠OCB,

∵OC=OB,

∴∠OCB=∠B,

∴∠AOF=∠COF,

∵在△AOF和△COF中,