如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)求直线AB与平面CBF所成角的大小;
(Ⅲ)当AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?
(I)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,
∴CB⊥平面ABEF.
∵AF⊂平面ABEF,∴AF⊥CB,
又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面CBF.
∵AF⊂平面ADF,∴平面DAF⊥平面CBF.
(II)解:根据(Ⅰ)的证明,有AF⊥平面CBF,
∴FB为AB在平面CBF内的射影,因此,∠ABF为直线AB与平面CBF所成的角
∵AB∥EF,∴四边形ABEF