如图,在三棱锥P﹣ABC中,∠PAC=∠BAC=90°,PA=PB,点D,F分别为BC,AB的中点.
(1)求证:直线DF∥平面PAC;
(2)求证:PF⊥AD.
证明:(1)∵点D,F分别为BC,AB的中点,
∴DF∥AC,
又∵DF⊄平面PAC,AC⊂平面PAC,
∴直线DF∥平面PAC.
(2)∵∠PAC=∠BAC=90°,
∴AC⊥AB,AC⊥AP,
又∵AB∩AP=A,AB,AP在平面PAB内,
∴AC⊥平面PAB,
∵PF⊂平面PAB,∴AC⊥PF,
∵PA=PB,F为AB的中点,∴PF⊥AB,
∵AC⊥PF,PF⊥AB,AC∩A