题干

设命题p:实数x满足x2﹣4ax+3a2<0,q:x2+2x﹣8>0,且¬p是¬q的必要不充分条件,求实数a的取值范围.
上一题 下一题 0.0难度 选择题 更新时间:2018-04-11 08:59:48

答案(点此获取答案解析)

解:∵¬p是¬q的必要不充分条件,∴p是q的充分不要条件.

设A={x|x2﹣4ax+3a2<0}={x|3a<x<a,a<0},B={x|x2+2x﹣8>0}={x|x<﹣4,或x>2},由题意可得 A⊊B.

当a<0时,可得 a≤﹣4.

当a>0时,可得 a≥2.

当a=0时,A=∅,满足A⊊B.

综上可得,实数a的取值范围为{a|a≤﹣4,或 a≥2,或 a=0}