题干

先仔细阅读材料,冉尝试解决问题
完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:
解:原式=2(x2+6x﹣2)
=2(x2+6x+9﹣9﹣2)
=2[(x+3)2﹣11]
=2(x+3)2﹣22
因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.
解决问题:
(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;
(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.
上一题 下一题 0.65难度 解答题 更新时间:2019-07-16 08:09:45

答案(点此获取答案解析)