刷题首页
题库
高中数学
题干
某市每年中考都要举行实验操作考试和体能测试,初三(1)班共有30名学生,如图表格为该班学生的这两项成绩,表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是
.
实验操作
不合格
合格
良好
优秀
体能测试
不合格
0
1
1
1
合格
0
2
1
良好
1
2
4
优秀
1
1
3
6
(Ⅰ)试确定
,
的值;
(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为
,求随机变量
的分布列及数学期望
.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-20 11:22:42
答案(点此获取答案解析)
同类题1
国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
分组
频数
10
22
40
20
8
以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)根据以往经验,可以认为实心球投掷距离
近似服从正态分布
,其中
近似为样本平均值,
近似为样本方差
,若规定:
时,测试成绩为“良好”,请估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,在被抽取的3人中,记实心球投掷距离在
内的人数为
,求
的概率分布及数学期望.
附:若
服从
,则
,
.
同类题2
某班50位学生期中考试数学成绩的频率分布直方图如下图所示,其中成绩分组区间是:40,50),50,60),60,70),70,80),80,90),90,100.
(1)求图中
x
的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为
ξ
,求
ξ
的数学期望.
同类题3
随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:
年龄(岁)
频数
5
10
15
10
5
5
手机支付
4
6
10
6
2
0
(1)若把年龄在
的人称为中青年,年龄在
的人称为中老年,请根据上表完成以下
列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?
手机支付
未使用手机支付
总计
中青年
中老年
总计
(2)若从年龄在
的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为
,求
的分布列及数学期望
.
参考公式:
,其中
.
独立性检验临界值表:
0.15
0.10
0.005
0.025
0.010
2.072
2.706
3.841
5.024
6.635
同类题4
我国华南沿海地区是台风登陆频繁的地区,为统计地形地貌对台风的不同影响,把华南沿海分成东西两区,对台风的强度按风速划分为:风速不小于30米/秒的称为强台风,风速小于30米/秒的称为风暴,下表是2014年对登陆华南地区的15次台风在东西两部的强度统计:
强台风
风暴
东部沿海
9
6
西部沿海
3
12
(1)根据上表,计算有没有99%以上的把握认为台风强度与东西地域有关;
(2)2017年8月23日,“天鸽”在深圳登陆,造成深圳特大风暴,如图所示的茎叶图统计了深圳15块区域的风速.(十位数为茎,个位数为叶)
①任取2个区域进行统计,求取到2个区域风速不都小于25的概率;
②任取3个区域进行统计,
表示“风速达到强台风级别的区域个数”,求
的分布列及数学期望
.
附:
,其中
.
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.455
0.708
1.323
2.702
2.706
3.841
5.024
6.635
7.879
10.828
同类题5
微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过2两小时的人被定义为“非微信达人”,己知“非微信达人”与“微信达人”人数比恰为3:2.
(1)确定
x
,
y
,
p
,
q
的值,并补全频率分布直方图;
(2)为进一步了解使用微信对自己的日常工作和生活是否有影响,从“微信达人”和“非微信达人”60人中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查,设选取的3人中“微信达人”的人数为X,求X的分布列和数学期望.
使用微信时间(单位:小时)
频数
频率
(0,0.5
3
0.05
(0.5,1
x
p
(1,1.5
9
0.15
(1.5,2
15
0.25
(2,2.5
18
0.30
(2.5,3
y
q
合计
60
1.00
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列