刷题首页
题库
高中数学
题干
(题文)某校数学文化节同时安排
、
两场讲座.已知甲、乙两寝室各有6位同学,甲寝室1人选择听
讲座,其余5人选择听
讲座;乙寝室2人选择听
讲座,其余4人选择听
讲座.现从甲、乙两寝室中各任选2人.
(Ⅰ)求选出的4人均选择听
讲座的概率;
(Ⅱ)设
为选出的4人中选择听
讲座的人数,求
的分布列和数学期望
.
上一题
下一题
0.99难度 解答题 更新时间:2016-08-24 05:16:39
答案(点此获取答案解析)
同类题1
2011年3月20日,第19个世界水日,主题是:“城市水资源管理”;2011年“六·五”世界环境日中国主题:“共建生态文明,共享绿色未来”.活动组织者为调查市民对活动主题的了解情况,随机对10~60岁的人群抽查了
人,调查的每个人都同时回答了两个问题,统计结果如下:
(Ⅰ)若以表中的频率近似看作各年龄段回答活动主题正确的概率,规定回答正确世界环境日中国主题的得20元奖励,回答正确世界水日主题的得30元奖励.组织者随机请一个家庭中的两名成员(大人42岁,孩子16岁)回答这两个主题,两个主题能否回答正确均无影响,分别写出这个家庭两个成员获得奖励的分布列并求该家庭获得奖励的期望;
(Ⅱ)求该家庭获得奖励为50元的概率.
同类题2
某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量
(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量
(千克)与使用某种液体肥料的质量
(千克)之间的关系如图所示.
(1)依据上图,是否可用线性回归模型拟合
与
的关系?请计算相关系数
并加以说明(精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量
限制,并有如下关系:
周光照量
(单位:小时)
光照控制仪运行台数
3
2
1
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数公式
,
参考数据:
,
.
同类题3
设非零常数
是等差数列
的公差,随机变量
等可能地取值
,则方差
( )
A.
B.
C.
D.
同类题4
新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在
地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.
(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(Ⅱ)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取4人,记分数在
的人数为
,求
的分布列与数学期望;
(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取
人作调查,记成绩在
,
的人数为
,若
,求
的最大值.
同类题5
甲、乙两个乒乓球选手进行比赛,他们的水平相当,规定“七局四胜”,即先赢四局者胜,若已知甲先赢了前两局,
求:(1)乙取胜的概率;
(2)比赛打满七局的概率;
(3)设比赛局数为X,求X的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量的均值与方差
离散型随机变量的均值
求离散型随机变量的均值