刷题首页
题库
高中数学
题干
为研究“在n次独立重复试验中,事件A恰好发生k次的概率的和”这个课题,我们可以分三步进行研究:(I)取特殊事件进行研究;(Ⅱ)观察分析上述结果得到研究结论;(Ⅲ)试证明你得到的结论。现在,请你完成:
(1)抛掷硬币4次,设
分别表示正面向上次数为0次,1次,2次,3次,4次的概率,求
(用分数表示),并求
;
(2)抛掷一颗骰子三次,设
分别表示向上一面点数是3恰好出现0次,1次,2次,3次的概率,求
(用分数表示),并求
;
(3)由(1)、(2)写出结论,并对得到的结论给予解释或给予证明.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-21 12:30:52
答案(点此获取答案解析)
同类题1
在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;
方案2:连猜三道“生活”类试题.
设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.
(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.
(2)职工甲选择哪一种方案所得平均分高?并说明理由.
同类题2
设
、
两队进行某类知识竞赛,竞赛为四局,每局比赛没有平局,前三局胜者均得1分,第四局胜的一队得2分,各局负者都得0分,假设每局比赛
队获胜的概率均为
,且各局比赛相互独立,则比赛结束时
队得分比
队高3分的概率为__________.
同类题3
连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.
同类题4
交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表
浮动因素
浮动比率
上一年度未发生有责任道路交通事故
下浮
上两年度未发生有责任道路交通事故
下浮
上三年度未发生有责任道路交通事故
下浮
上一个年度发生一次有责任不涉及死亡的道路交通事故
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故
上浮
上一个年度发生有责任交通死亡事故
上浮
某机构为了解某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型
数量
以这
辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损
元,一辆非事故车盈利
元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进
辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
同类题5
某超市中秋节期间举行有奖销售活动,凡消费金额满200元的顾客均获得一次抽奖的机会,中奖一次即可获得5元红包,没有中奖不得红包
现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为
,记X为4名顾客获得的红包金额总和,则
______.
相关知识点
计数原理与概率统计
随机变量及其分布
二项分布及其应用
独立重复试验
独立重复试验的概率问题
利用二项分布求分布列