刷题首页
题库
高中数学
题干
某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:抛两枚骰子,得到的点数之和是几就选几班,这种选法( )
A.公平,每个班被选到的概率都为
B.公平,每个班被选到的概率都为
C.不公平,6班被选到的概率最大
D.不公平,7班被选到的概率最大
上一题
下一题
0.99难度 单选题 更新时间:2020-02-17 11:16:16
答案(点此获取答案解析)
同类题1
在《周易》中,长横“
”表示阳爻,两个短横“
”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有
种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是( )
A.
B.
C.
D.
同类题2
若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为“递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________.
同类题3
从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A.
B.
C.
D.
同类题4
袋中有a个黑球和b个白球,随机地每次从中取出一球,每次取后不放回,记事件A为“直到第k次才取到黑球”,其中1≤k≤b;事件B为“第7次取出的球恰好是黑球”,其中1≤k≤b。
(Ⅰ)若a=5,b=3,k=2,求事件A发生的概率;
(Ⅱ)判断事件B发生的概率是否随k取值的变化而变化?并说明理由;
(Ⅲ)比较a=5,b=9时事件A发生的概率与a=5,b=10时事件A发生的概率的大小,并说明理由。
同类题5
下列五个命题:
①“
”是“
为
R
上的增函数”的充分不必要条件;
②函数
有两个零点;
③集合
A
={2,3},
B
={1,2,3},从
A
,
B
中各任意取一个数,则这两数之和等于4的概率是
;
④动圆
C
即与定圆
相外切,又与
y
轴相切,则圆心
C
的轨迹方程是
⑤若对任意的正数
x
,不等式
恒成立,则实数
的取值范围是
其中正确的命题序号是_____.
相关知识点
计数原理与概率统计
概率
古典概型