刷题首页
题库
高中数学
题干
某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为
A.
B.
C.
D.以上全错
上一题
下一题
0.99难度 单选题 更新时间:2014-10-20 05:03:53
答案(点此获取答案解析)
同类题1
如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒100粒豆子,落在阴影区域内的豆子共60粒,据此估计阴影区域的面积为______.
同类题2
中国古代的数学家们最早发现并应用勾股定理,而最先对勾股定理进行证明的是三国时期的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,
个相等的直角三角形再加上中间的那个小正方形组成一个大的正方形。若直角三角形的较小锐角
的正切值为
,现向该正方形区域内投掷-枚飞镖,则飞镖落在小正方形内(阴影部分)的概率是( )
A.
B.
C.
D.
同类题3
如图,选自我国古代数学名著《周髀算经》.图中大正方形边长为5,四个全等的直角三角形围成一个小正方形(阴影部分),直角三角形较长的直角边长为4.若将一质点随机投入大正方形中,则质点落在阴影部分的概率是( ).
A.
B.
C.
D.
同类题4
中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形
是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若
,则在正方形
内随机取一点,该点恰好在正方形
内的概率为( )
A.
B.
C.
D.
同类题5
在
内随机地取一个数
,则事件“直线
与圆
有公共点”发生的概率为( )
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型