如图1,在数轴上A、B两点对应的数分别是6、﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上).
(1)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.
①当t=1时,求α的度数;
②猜想∠BCE和α的数量关系,并证明;
(2)如图3,开始∠D
1C
1E
1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D
1C
1E
1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C
1顺时针旋转30t度,作C
1F
1平分∠AC
1E
1,记∠D
1C
1F
1=β,若α与β满足

,求出此时t的值.


